Cancer cells that cannot be removed by surgeons often cause tumors to return or metastasize. In a study published in Nature Nanotechnology in February, Dmitri Lapotko, Ph.D., and his team at Rice University (currently with Masimo Corporation, CA) describe a new way to combat these leftover cancer cells. In this new approach, tiny gold particles have cancer-specific antibodies attached to their surface, which enable the particles to be engulfed in high concentrations and cluster only in cancer cells. These gold clusters, when exposed to a short broad laser pulse, heat and evaporate surrounding liquid, producing a “plasmonic nanobubble.” This nanobubble produces an “acoustic pop” which reveals the cancer cell and then causes an explosion that destroys it from the inside out.
Gold particles can be injected prior to a surgery so they can travel to and cluster in cancer cells. After a tumor is removed in surgery, the laser (near-infrared) pulse is low energy, which can travel safely through a centimeter of tissue, is applied. The laser pulse only causes the nanobubble-induced damage in the remaining cancer cells with gold particles and are the only ones destroyed. This unique approach might be able to reduce the amount of unintended damage done to the patient, especially if the tumor is located in a sensitive area such as the brain, head and neck, breast, or prostate.
“This is a creative and novel approach that combines an understanding of the basic biophysics of heat transfer with the exquisite specificity and chemistry of the targeting antibodies,” said Rosemarie Hunziker, Director of the program for Tissue Engineering at NIBIB. “It could become a powerful tool in our arsenal to fight cancer.”
When surgeons injected these gold particles into mice with cancer before surgery, the initial results were impressive. While 80% of the mice in the operated group that did not receive the gold particle treatment died due to tumors that recurred within 10 days after surgery, none of the mice that received the additional nanobubble treatment regrew tumors in the following two months.
Detailed information can be found from NIBIB website.
No comments:
Post a Comment