13 September, 2016

Smart nanoparticles overcome multidrug-resistant cancer

Multidrug resistance (MDR) is the mechanism by which many cancers develop resistance to chemotherapy drugs, resulting in minimal cell death and the expansion of drug-resistant tumors. To address the problem of resistance, researchers have developed nanoparticles that simultaneously deliver chemotherapy drugs to tumors and inhibit the MDR proteins that pump the therapeutic drugs out of the cell. The process is known as chemosensitization, as blocking this resistance renders the tumor highly sensitive to the cancer-killing chemotherapy.

The two publications report on the engineering of two separate nanoparticles that test different strategies for achieving chemosensitization of cancer cells. The first targets MDR breast cancer. The engineered round nanoparticle is made of several layers. The center of the particle is loaded with the anti-cancer drug doxorubicin. The drug is surrounded by a water-repelling (hydrophobic) capsule to protect it from the watery environment when the particle is injected into the circulatory system of an experimental animal or individual with cancer.
The particle has several outer layers with different properties. One of the outermost components, a molecule called PEG, is hydrophilic (mixes with water) and helps the particle move through the bloodstream until it encounters the breast tumor cells. Another component on the surface of the particle, biotin, functions to bind specifically to the cancer cells and helps the drug-carrying nanoparticle to enter the cell.

Once inside the breast cancer cell, a fourth component called curcumin, which is intertwined with the doxorubicin center, is released along with the doxorubicin. The curcumin is the component that blocks the cell machinery that would pump the doxorubicin out of the cell. Without the ability to pump out the medicine, the cell is exposed to very high concentration of doxorubicin, which kills the breast cancer cells.

Full story can be found from NIH website.

No comments:

Post a Comment